
TM-1095 
2320.000 

PASCAL AND FORTRAN COMPARISONS FOR THE 
PDP-11/34 AND VAX 11/780 

A. M. Waller 

March 1, 1982 



TM-1095 

II. Intruductiun -- 

The Accelerator Can-ho1 Sysi;em”s new holj4.i computer 
configuration empruys a m i x t u r e of PDP-il/34is and VAX 
61:780’5. i”ji3r;t ap@lication program5 wi,ll be written in a 
high levf?l language folr executic3n on the PDP-11/‘34. Twn 
high level language c5mpilerrr will be avai lab 1.e to the 
application pr#gTammer frsr the dev#lopment of pTftgT43iTi5 
targetted *or the FDP-li/3?. These will be FORTRAN IV-PLUS 
and OMSI PASCAL. Swne appiicakions wi11 ~bviaus1.q te mare 
attractive o6 convenienk f;o cade in FCaRTRAN, others in 
PASCAL. Hows;ver 3 there will be a class OF applications for 
which tile ""carrect"' UT "'i3e5t" chcaice af compileI- is n 0 t 
obvious. En pal-%icular, tilare will be applications +'csr 
which the -iZXiFClJtiOvli s;pi?ed and/a?- execution storage 

requirements ape at a pren1ium. In such CC35@S it i 5 
necessary to know the relative properties of the target code 
produced by the two campilers. 

The ccmpaTiso*n5 described here shnuld p.rwvide the 
i3ppliCGltiO~ programmer with sc3me --- guidance #l-l some af tile 
pertalties he call expect to pag in using a particular 
COfB(PilW- f5T many common opesations. 'The5e compa~i5ura~i do 
not claim to illustrate all the re,levant diffesenkes between 
the compilers in question. 



TM-1095 

The FASCAL and FORTRAN comparisons for the PDF-II/34 
and the VAX 11/‘78# were dune in three stages, 

1. Cu~sorg inspection af code generated #or various c 5rnM5l-l 
a5pects 09 both languages. 

a. W~&TST~~~ timing test. 
3. Modified W~~TST~~~~ timing program used to fTlea5wre the 

non-weighted time of 42%3Ch module cumprising the 
WHETSTiaNE i;est. 

Pa non-runnatle piece aa? coding was generated to inspect 
the foX1owing stateme~e~/expressi~~~: 

1. Arithmekic expressians with variables and cnnstants. 
Y Assignment expressians 
* %ntege”r arithmetic fmwltiplyl divide, subtract) 
Y Exponen%iation (not available in CM!SI PASCAL~ 

2. Logical expressions. 
-E IF-THEN-ELSE construct (only IF--THEN in F~~TRA~~ 

IV-FLWS1 
9 relational. constructs 

4. ?rocedure and func2;ion caZ1 statements. 

5. cASE~icompwted iGDTO 1;tatments. 



TM-1095 
Page 3 

2. 0 WHETSTONE TIMINO 

The WETSTONE performance test is a special “‘synthetical 
benchmark program. 142 wa5 designed to take into account: 
machine architecture and compiler efficiency. Since the 
architecture of the machines remains the s;amet this test 
give5 a goed measure of PASCAL vs. FORTRAN c onrp 11 &j~ 
efficiencg for the PDP--Ii/34 and then the VAX 1?/7RO. 

‘The benchmark reports ?I-exults in b.lhe%s%;one 
instrucfiuns/second. These “in~t~ucti~~~” are only semcttej2y 
connected with PhlJ5iCtSl machine instructions thence 
sgnthekic ). The k*lhets%one instruction is a lt3gical 
instruction such as “take integer resuft” or I1 g c) e 5 ” 0 r a 
I’ c a 1 1 I’ bluck. These t”instructions”” mag camps-is% several 
physical machine instructions. There are 11 modules in e;Re 
program. Each module repr.e~ents a typicalr CBII\~CIPL group of 
f;tatementiz that may welE exist in a scientific program. To 
further simulate sealitg these moduler; are weighted based on 
s4;akistics gathered about the style of scientific 
progsamming used at t3fie i.ns%itution. 

The complete article and original ALGal program which 
heralded fhe age wf Whetstone performance measurements 5~5 
available in the ~~R~~~~~ Bibrary. See below. 

After looking at compiler generated code and whet5tone 
performance nwmbersi what else is there to do3 

It would be interesting to see whese % h e inefficiency 
of a compiler is when it is ~unrting .the Whetrjtone test. ‘The 
Metstone program was modified to Tepart timing values for 

each of the madvles. This proved a useful kool in a few 
isolated cases where a particular laop timing for a cumpileT 
did not flsll.aw the gemeT%al trend of timing differences. A 
look at the geneFated code revealed introductions of ShWTt 
cuts and other interesting side effects due to optimization. 



The conclusions reached in this section are a ~esubt sf 
the test progqrams that appear in Appendices A and B. ‘I” h e 
modified &Jhetskane test is not listed since ik’is a%most khe 
same coding as the Whetstone test progTam. FOP the modified 
bdhetstrrn@ test; coding was inserted to meaBur@ thQ %ime it 
took to execute each o-f the maJor loops. 

PASCAL takes a +ew mo’re bytes im ordc? to sto*r*e a value 
into the variable an every assignment statement. FDRTRAN 
will leai6e values in register5 untiP 514ch time a55 it is 
needed to be stor*ed into the variable. T‘hca phi. II.osophy of 
QMSI PASCAL is to disab.te va‘riable assignment to registers 
in the mail-i program if ,any i?Xt@Tl-!al psocedures Jar@ 
referenced ias in my test program). This is SQ because ?zhs 
compiler can n 0 t determine what variables maq be used by 
5;uch rDutines. 

There are C~SBS where the PARAMETER statement may cause 
mua e cuding to be generated (as in the assigmment block 
belowi. This is because ~~R~~~T~R forces t I? e c*mpiIkeF to 
generate an il?StTUCtiOl? using a liteTa eversy time ~athe-r 
than optimizing on a regis%er-to--register f!lOVQ. This is 
strictly a result of the compiler alghal-ithms implemented to 
generate code. It serves orrly ta show that an *ptimizing 
cornpiPer CBR be “tricked’” into "no-optimixation" an same 
lClCdl instruction grohlps, In generaI* the results in 
5avings using PARAMETER statements is examplified in the 
IF-THEN block beloiss. 

Althos~gh ~~~~~E~-~~ statements wi 11 generate literalc,, 
arithmh3tic expressions are not reduced during compile time. 
That is* the arithmetic coding is geneFated and executed at 
run time. OMSI PASCAL dolls reduce constants in arithmetic 
expressions at compi’le time (called constant +FcbIdirrg 1. In 
the IF-THEN block belaw, where PASCAL is less efficient in 
code generation +t3r assignment s’t;atements it makes up for in 
constank folding 6”-or a net gain on generated compiled code. 

If the PASCAL p~ocedul’e ca31 is made and the argument 
value is in a register the number of bytes of code yemesated 
will be 2*N. If -PihE? aTgerment vaXue is StQred theI-4 4*N bytes 
al-e generated WhE!?t2 N is the numbe,r of arguments. IS the 
pFacsdure is an external. procedl~re only 2*N + 4 bytes of 



cod zing are gene‘rated. If the preicodure is miPASC&.. mars 
interface code is generated and a jump to a FPRT’RAN 
interface rt34Jtinc? is made. ah!.ls the $irrjt set of numbers 
for the CALL statemen* under PASCAL are fcas t h e argment 
VdlWr! being in the Tegister. The second set is $or stared 
argument vafuss. The .r?irs% number in each set 14 f 0 ‘f’ a 

PASCAL external procedwe. -!-he second number is for a 
NBN-PASCAL externa1 pror,edure. 



TM-1095 

38 bytes 34/3dJ bytes 

40 bqtes &A2d44 byt@s 

12 bytes r12 bytes 

32 bytes 42 bqtec, 



TM-1095 
PASCtw.” AND FORTR4N Cl34PAR ISGNS FCJR WE PDP-11/34 AND VAX 111780 
E$#iciency comparisons of OMSI f3ASCAL and FORTRAN IV-PLUS 

Page 7 

The only advantage af FASCAL PACKED arrays is in the 
TYPE ~~~LEA~" For example; a PACKED array Cf. I SF%. .323 CIF 
~~~~E~~ will allocate oniy 32 bytes 0-F memory. The Sam9 

~I~~~SI~~~d arraq using LOGICAL*1 in FORTRAN will allocate 
I.92 bytes of memory. Therefore PASCAL OffeT5 a l&i3 byte 
savings in this example. 

Using the Whetstone program as a "i;qpicalif programi 
the fcollcWing statistics WET-@ compiled from thtl load maps 
for *okal memory requirements. 

Vhr last thP@e items in Table 2 beiow would need 4Fe, 
have the word al3.acation modified in the Accelerator Control 
System. These ikerns would be replaced by in-hause WFitten 

IIF0 for our real-kime applica%ions. 

idhile not ail of the initialization can ga, such items 
as CPENiCLOSE and comm#n I/B rautiries may disappear or take 
on smaller pracedure sizes. 

For I/O format processing8 PASCAI- also inc lrrdes Lbe 
WI-i%@ integer and wFite real ~ouS;ines. Fsrkran appears to 
have read/write T-OLJ-tiYl@S for integer, real> logical as 
complete packages. Thus if one is only writing integer in 
FORTRAN *he package ~QP readin% as well as writ;J.ng integer 
is loaded. I rl both PASCAL and FORTRAN only the necessary 
conversion routines are loaded. Im,both PASCAL and FORTRAN 
the general. input and geneFar output dTiverr; ave loaded. 

For PASGAt,the common work area is basically ~~A~~~TA~~ 
E.tCWagC?. Although 2048 words were explirit;ly aliecrated here 
FoF HEAP storage.. less could have been allocated. The 20413 
words is a default minimum. The HEAP area will always need 
to be available fo7" PASCAL if far nsthing moTe khan the 
s-tack. The sine 09 the stack will vary faom application to 
application and is principally determined by the maximum 
depth to which procedures are called. Heap as currel7Cly 
used for I/Q control blocks as well as allocating dqnamic 
me4atory when the procedure NEeJ is called. Heap is Breed 
whenever a file is closed or whencater the procedure BiSPDSE 
is called. 



PASCAL FORTRAN IV-PLUS 
----U------I-“---“------,.---------.---~------.- ---------------------___l____l___________ 



TM-1095 

Looking at the individwaf lc4op timimg5, anlg t3me lQQj3 
time i-5 grsasslg different. That one is in PASCAL laap 
numbelr 9 with ar$r-ag re+erencing Via procedwre callsr. iA 
listing of the PASCAL SQWl-ce code is given in Appemdix 83). 
This warrented an investigatian. 

9t Ewrns aw% that %I-!@ two othel- local pl-ocedwres used 
in the Mhetstane test loops do nat -require +u1’3 register use 
(reg i StcPs RO-R5). the pTocaduPs WS@S the d3lQating 
regis%ers and the o%her omly use5 R3 and R5. l;m this one 
pa~%icwlar procedure registers RO--R3 al-e WSEtd frJr rapid 
indexing of al-rag elements. A fwBi C#l-i%E?X% SBVB of 
registers RO-R5 is done at the entay of this p~eeedu~e and a 
Pestore is dene at the end of the procedure. F~~T~~~~ need 
not de, this since it is not re-en%ran%. A quick check cf 
the save and rerjtore rsu%inea veriqies that each time the 
procsdwe in loop number 9 is called theye is an added 
overhead o+ +7rfi mic?'aIjeconds. The actual. badq oe' coding 
gemeT+a%ed -For the PASCAL pracedwre 1Qoks very similiar tai 
%be coding generated by the FC.#TRAN crsmpilw (cor?ceptwalltJj. 

Loup nwmber 8 in PASCAL is tl7e 5econd 1aPgc variation 
and this is due %s the Fact that thl-ee arguments must be 
moved f~urn local stowage and moved tal the stack bi;i"care tile 
procedwpe is called. This requires i-2 bgtes af ccading far 3 
move instructions 50 calling this procedure does take mare 
overhead. 

A lis%img Qf the PASCAL version uf’ &he Whetstone test 
appears in Appendix B. 



TABLE 3 

EXECWTIESN = 
EXECUTPCjN = 
EXECUTION = 
EXECWTION = 
EXECWTJtS! = 
EXECUTPQN = 
EXECUTION - 
EXECUTLCSN = 
EXECUTICSN = 
EXECUTION = 
EXECUTIDN = 
ALL DONE 

5.55 MICRO--SEC. 
256. $8 MICWO-SEC. 

a612.55 MICRO-SEC. 
36. 31 MICRCI-SEC. 

0.05 MlCRO-SEC. 
140. 48 MICuo--~SEC. 

3377.59 MICRO-SEC. 
145.42 MICRO-SEC. 

65. 83 MPCRD-SEC. 
5.50 MICRU-SEC. 

827. 97 MICRO-SEC. 

EXECWTICIN = 
EXECWTICfN = 
EXECUTTUN = 
EXECWTIDN = 
EXECUTION = 
EXECWTIC3N = 
EXECWT IUN = 
EXECWTICIN = 
EXE~WT~U~ = 
EXECUTION = 
EXECWTIClN = 
ALL DONE 

6. 55 MICRO-“SEC. 
254.41 MI:CRQ-SEC. 

i596. 55 O”iZCR@-SEC. 
33.51 MZCRO-SEC. 

0. 05 MICRO--S&C. 
154.44 MICRO-SEC. 

326fi. 42 MICRCS-SEC. 
i/69. 15 MICRO-SEC. 
145. 02 MICRCS-SEC. 

i2.‘55 MICRO-SEC. 
a50.44 MICRO-SEC. 

LOOP 11 = NIL 
LOUP = AURA? REFERENCING I N-L 1 NE 
LcmP3 = ARRAY REFERENCING ARRAY AS PROCEDURE PARAMETER 
LC30F4 = CO~~~T~U~~L JUMPS 
LcmPS = NIL 
LOOPt = 3NTEQER ARITHMETPC 
Lc)OPT - TRIG. FW~~~~~~~ 
LtlisP8 = PRDCEDURE CALL 
LOOPS = &RRA‘Cb REFER~~dC~~~ V3A PROCEDURE 
LOOPi5= NIL 
LOOP11= ~T~~~~R~ FUNCTIf3NS 



PASCAL: 



TM-1095 

The conclusions reached in this section a-i-g! a result o$ 
thQ test pragramlj that appear in Appendices C and D. The 
modified ~~@tstQ~~ tQ5t is not listed since it is almos% t&e 
same coding as %he kdhetstone test prag-ram. FOP the modified 
!3JhQ%stonQ &Q5%i coding was inser%cd tra measure the time i% 
took to execute each af the rna~o~ loops. 

The second number in the two VAX F~~T~~~ ca$umns in 
Table 4 below indicate the amount of coding generated with 
constan%s de?kned as ~~~~~~T~R statements instead af DA-I-A 
statements. 

As cam be 5eQm fTQrn Table 4 bekowi the ~AR~~~TER 
statememt cam greatly reduce the amrswnt of code genesated. 
In all cases (optimized O'P non-aptimizedl VAX FCiRTRAihi also 
does constant I?olding ~$0 t h a t iF cnns%an%s appear in an 
arithmetic exp~essian the campiPe~ will, seduce the a%eshelt to 

PiteT~al valwe. VAX PASCAL. dons not use canstan% folding. 
yhis is aus% the g~ppasi%e at" 5MSH PaAL and FORTRAN IV-FLUS 
#or the PDP-11/34s. Qp%imira%ion in VAX F5RTR~~ is f~sr 
ex~cw%iun speed and the compiler will generate %he necessasy 
COdQ to mave values or addaesses into registers before that 
code which compaises the body ol" the higher 1 eve 1 language 
sta%ement is executed. This can end up in the generatian o+ 
more bytes of code? as shown in %he assignment block below. 

Altbowgh execution is faster via register, the cumpil.ar 
mechanics implemented to generate th Q optimized code can be 
"trick@d" into generating code which actually Execwtes 
slower. .TAis will be pointed out later. ?.n generar %bough 
the compiler optimization afgoaithms can realize an OV@TB 11 
gaim in ef#iciemry of approximately 4%. 

The ~armhtla giVc;I-! bEtaraw fckr the amount 01” cadimg 
generated bg a VAX PASCAL call statement is gene3-a2 and nak 
totally applicable. The farmwla gives one a general idea un 
ap~~Q~~~at~~~ how much code car be genera%ed. 1% depends on 
how the COrFaf3il@T will. generate cad irrg (registers4 memtrq 
~c?ferenc~~ litepals, etc. 5. MQWi?VeTSI +18 bytes are generated 
for every aPgum@n% that is a string. This is because VAX 
PASCAL must set wp %hQ s%ring deEac-rip%w OS-I the Stack befe-re 
the prncedure call. VAX FORTRAN just references a fixed 
list. 

A listing of the PASCAL code used %a produce Table 4 
bellow appears in Appendix C. 



TM-1095 
Page 13 

PASCAL. F~~T~~~ 

---I----I-II”--Y-_-.----” m.---. ---------‘-~“~---~~” I--_ - 
---.-1---------.--------.--------.-------------,--- 

27 bytes 

Where N is the number af parameters passed. 
WheITe s is the number af string descriptor a.Pqum?nts 

passed. 



TM-1095 
11 ixm Page I-4 

The advantage aF VAX PASCAL PACMElD arrays is identical 
to the treatmiElnt given in the PDP-Xl/34 5ectiDl-l us: this 
paper. 

PASCiaiL F~~~~~~ 
-m-.--vv..--I--_I- -1---111---------- ---- -- _._- ------v.l-‘w”.e..---------*---------”----~~”.. 

1330 k?i.jtes -.---.-.-..“.“-.. -.-- 



TM-1095 

Table b’below gives %he misdified and normaa Whetstrsne 
benchmark %imes. The t4ih~tstcin~ ~~~chma~k indicates %ha% VAX 
PASCAL is a~~~~xi~~~%~~~ 40% less Qfficierlt %har1 (~P%i(~i~Qd 
VAX FORTRAN. 

Laoking a% individual loop timingsj a passing c ommsnt 
wiJl1 be made abbu% l5of.l number $3 in non-sp%imired VAX 
F~~T~A~. (A lis%ing of the FDR-D?AN 5ource ci3de is given Lib-i 
App4zndix H)). In %Ris particulaa ci~cums%anc~ the aptimize~r 
which grt3duced cads to load variables into regis%e=rs mustr 
a% the end of %he rotl%inal qene~+ate code %CI load the results 
back into memo-l-y loca%ions. This takes f2Xtl-a code bU%J 
Ul-bfOT+JU!-li?tQ~L.j, iY-9 this ciscumsfance also extra time. The 
nowaptimized code gust generats mem!3ry referenced 
instructions SE) it seed no% go through the extra storage 
St@pS. Hes.e the amount 04” code praducad alias sma1r 50 the 
effect5 of memaY-y vs. -register spsled is 7752; weI1 takerI 

advantage of. 

1% will be nated %ha% VAX PASCAL Zocip numbers 7#8,P,and 
li arr3 markedlLq slower %han VAX F~~~~~~~. All Shese lnaps 
make praizedure calls. VAX FORTRAN takes advantage ef its 
non-~-e--entrant natwQ and passes a Inca4 argument list via a 
CALLG instruction. These is na uvePh cad af pushing 
argurmnts upan the s%ac k b Q f or i? Qxecuti.5f-l of the CALL-G 
instruc%iun. FOT math routines a special entry point is 

Jumped to fo1- VAX F~~~~~~ vi;0 the J *mp tcs subri3u%ine 
ins%ruc%ian 3SB thus reducing uver*hrad even mope. The 1rJop 
timings shew %ha% %his special VAX F~~-~~A~ en%ry reduces 
overhead by about 3. 5X. The inefficienct.J in VAX P#sCAL i 5 
due to having %a push arguments an %he s%ack before using 
%RQ CALLS ins%ruc%inn. 



6. rlj0 MICRO-SEC. 
29. 79 I"tICR9--SEC. 

235.88 MKCWU-SEC. 
9. 67 AIKCRO-SEC. 
8. cm MICRO--SEC. 

32.32 PiKCRO-SEC. 
296. 30 MZCMO-SEC. 

40. 04 MICRO--SEC. 
27. 19 MTCRO-SEC. 

0. oa M~~~~~-.SE~. 
88. 72 MICRU-SEC. 

EXEGWTKON = 
EXECWT T QN = 
EXECWTIDM = 
EXECWTIQN = 
E~~~WT~~~ = 
EXECWfIlSN = 
EXECWTIS4N = 
EXECUTION = 
ExECwTIaN = 
EXECWT I CM = 
EXECWTKON = 
ALL .l.mNE 

EXECWTICSN = 
EXECWTICiN = 
EXECWTXON = 
ExEGwTKa~ = 
EXECUTION = 
EXE~WT~~~ = 
EXECWTIClN = 
EXECUTION = 
EXECWTEOhs = 
EXECWTIC)N = 
EXECWTION = 
ALL. DDONE 

Q.Os9 3”1ICRi3-SEC. 
33.48 MICRO-SEC. 

393.66 MICRO-SEC. 
I I I 90 MKCRi3-SEC. 

0. 60 MICRD-SEC. 
39. 815 MIcRa--SEC. 

299. !!.?I MICRO-SEC. 
38. 24 MYCRO-SEC. 
263.78 MKCRa-SEC. 

0. 00 tl1et?a--SEC. 
89. 33 ~~~~~a-sE~. 

Q.00 MICRO-SEC. 
33.365 MICRO-SEC. 

281. 32 MICRO-SEC. 
l4.2# MTCRO-SEC. 

0.00 MICRO-SEC. 
39. 25 MPCRO-SEC. 

553. 42 MICRO-SEC. 
78. 83 MICRO--SEC. 
47. 91 HTCRO-SEC. 

0. 00 blICRO--SEC. 
l.db9.16 PIKCRO-SEC. 



PASCAL: 



V. Comments on wsino h3MSI PASCAL +a~ the PDF-l’d/34 

Some of the folPawing comments are brought up i n the 
OMSI PASCAL manwa 1 ijwt are important enough to be 
re-iterated and expanded wpon hePe. 

The first thing ta remr?mbe.~ is to build mEi T. PASCAL 
t;a?skr; with the FP and CP switches for floating point Swe do 
have floating point) and to make the task checkpaintable_ 
If Crne do&?5 not make the task checkpointable one will 
aecif icaP:du have to define the amount of dynamic heap 
5toragn through 1;he lirrker Ccane must have syr;gened their RSX 
sqstem to include the Extend Task directive.. . as 5h~r5 isI. 

The RESET aad REWRITE pracedwres have three extra 
arguments. !Itther than the file variable argument theFt? are 
file name# default file fi@PdSl and file site aPgwmPnt5. 
This is not standard but it is a yel‘q good extension ta WV31 
PASCAL fFfile definition. 

Since real precision is determined and set at 
ini.tialization of the main pl-ogrami all external modules 
must be compiled lalith the same real precision (single lar 
dowble~ a5 the mail-i praigTam. 

Procedures and functions f+om one ca.mpilation form a 
single module and cannot be individually selected e’g-arn the 
module. Qne should structure their modules. wisely 5.0 that 
mast 13-r onlt.~ the praceduses needed will be linked. 

ThE? $inal paint ta make abau+ madules involves the udje 
#f global. Since this topic appJgs to bath 01”153 PASCAL and 
VAX PASCAL nt will be? covered below in the VAX PAXAL. 
section. 



VI. Comments on wsinq V,LsX PASCAL o'n the VAX 11P78Q 

VAX PASCAL and Ut”lSI PASCAL allow global 5ertians in 
external modules to share %he global in the main program. 
This makes a19 external modulesi appear a5 if they W&?-E! 
compiled with the main prirrg~am. 

Orte should avoid global variablefi i TI madules, 
especially those modules Which wil.1 be used by other people. 
b4hile global irj tmost tempting tc! use a5 a method of 
inter-procedure ~~rnrn~~-~~~~t~~~ within a module; it is 
suggested that variables be passed as VAR parameters tu 
other procedwres. 

1-F one mu<t use glctbal. in external modules the type and de. 
size mu-it -- cwrrespwnd to the global existing in the main 
pragpam. The use eaf these globais must be Well URdC?TSitOOd 

by both main program and the external module. -- 



TM-1095 



m
s 



TM-1095 

APPENDIX E 



TM-1095 

PROGRAM ~~E~~T~~E~5U~~~~T~ OUTFILEI; 
CCJNST ~AK~~R~ z &5535; 

STAR-r = 0; 
STOP = 1; 

TYPE RARRAY = ARRAVC1. .41 5F REAL; 
VAR OWTFILE: TEXT; 

X1, X2, X31 X4, X, ‘v’s Z, -I-, Tl, T2: REAL; 
& 1: RARRkYr 
I, J, K, L, Nlf Nrti N3, MY> N5, Nf?2,N’?, NB, NT> N18, Ni 1: INTEGER; 
LOQP, JJ: INTEGER; 
STIMEI TTSt”ZE: REAL: 

tPJALLt WALLO: REAL; 
FUNCTIESN WTIMEt MODE: INTEGER ): BEAL; 
VAR PER5: REAL; 
FWNCTION ~~~~~§~V~R PARAM: REAL) : REAL; NQNPASCAL; 
BEGIN 
ZER5 := 8.03 
IF MODE 0 0 THEN 

BEGfN 
MALL : = fECNDSiWALLO> i 
WrfME : = baLLi 
WALL0 : = ~~~~~~~ZE~5jj 

ENU 
ELSE 

BEGIN 
WALLO : = SECNDS<ZER5fj 
WTIME : = ZER5i 

EldI); 
END; ’ 
PR5~~~WR~ PA{ VAR E: R~RR~Y 1; 
VAR d: INTEGER; 
jDEGIN 

J := 0; 
WHILE JG DO 

BEGIN 
EC11 := 4Et1l+EC23+E~3f-Er4l~~T~ 
EC21 := (EE17+EC2l-EE3l~Ef4l)~T~ 
EL31 := CE~1l-E~%l*EE3l~EC4l~~Ti 
EE41 := I-EC1laEC~ltEC3l+Ef47)JT2i 
J : = J-r-1; 

Eblhl; 
END ‘i* FRCKEDWRE PA 91; 
PROCEDURE PO; 
BEGIN 

E%CJl :== ElEKl; 
EfCKZ := ElCLl; 
El EL1 := ElCJIi 

END fs ~R5~~~~RE PO ~1; 
PROCEDURE P31 VAR XI ‘r’s Z: REAL3j 
VAR KlIY%: REALi 
BEGIN 

Xl := !A; 
ii1 : =J Y; 
X1 : = ‘T*Ixl+-Yl I! 



* V 

* 
N . 



TM-1095 

Page B-4 





TM-1095 
Page B--G 

IF (JJ=L55Pl 
THEN 

POWTiNdO, J, kit Xl, X2, X3, X4); 
t* MODULE II : ST~N~~R~ F~N~T~5NS ui 

5( :z 0. “65; 
FOR I:=1 TO 1-41.1 D5 

x := SQRTCEXP(LNIXS/T1)>~ 
i* END MQBULE Pi 8) 

IF i JJ=LQQP ) 
THEN 

P5UTtNll# J, K, x, XI K, Xl; 
ENDi 

TTIME : = fidTIMEiSTQP 1 i 
STIME := TTIME; 
TTiME : = TTIME/&0. ilr 
STIME := kBOP*l. OE6/STPMEi 
tdRlTELNC ’ ~EN~H~~R~ ~X~~~-~~~N 
WRITELNl ’ EXECUTIQN = ‘I STfME 
tdRITELNl ’ ALL D5NE ’ :j; 

END. 

TIME IS ‘P TTIME: 8: 4, .’ MINUTES. ’ jj 
: 1a:2, c ~~H~TSTQN~ INSTRUCT3 ONS/SEC. ’ 



TM-1095 



TM-1095 
Pag Ez e-2 

PRQ~R~~~ FURPAS; 
CQNST 

. = 5. ui 
iti = 18. t3i 
c = 20. a; 
Ii = 2. ia; 
%~~~L~~~E “SYS$LIBRARY: LPBDEF. P#+S/N5LIST’ 

TYPE 
~QR~LE~~ = 0. . $5535; 
blQRD = PACKED REC5RD 

WQRLjTYPE: W5RDLEN 
END; 

STR~N~LEN = i. . 72: 
STRING = PACKED ARRAY lISTRINCbEN7 ‘;F CHAR; 
MESSGLEN = 1. . 12; 
MESSAGE - PACKED ARRAY t PIESSQLENZ IX CHARj 

VAR 
XI ‘~‘1 Z: REALi 
I: INTEGER; 
MQKIE: INTEGER i 
~5~i~~~N~~~NE: STRING; 
STP.TUS: INTEGER i 
CQMLEN: W5RD; 
PRQMPT: MESSAGE; 

FU~~T~O~ LI~$GETFQREIGN(%ST~ESew ~Q~:ST~~~~j 
%ST%)ESCR PRMPT: PSESSAGEj 
VAR LEN: WORD) : INTEGER; 

EXTERN; 
~RQ~E~W~E L~~~ST5P~~~~~~~ ERROR: INTEGER! 
EXTERNi 
BEGIN 

z Ai := 
x : = A%EldC--Z; 
Y : = A**D; 
IF (j( >.-zs Y) AND tk’ cc> 

THEN 
z :” I C+D r -A 

ELSE 
z := iC-B5+Ai 

I . - 0; 
bJHiLE I 5:: 20 DiJ 

BEGIN 
f := I-l-1; 
7: :” 24-2. 0; 

ENDi 
FOR 1 :=I TCD 100 DC) 

BEGIN 
z := z-3. 0; 
x 1” x+1. 5: 

END; 
F’RQMPT : = ‘FILE NAMES: 
STATUS : = LaBBGETFnREIGN(COMMAN~L~F~E~ PRCW’IPT, CQMLEN); 
IF STATUS x:> L~~~~QR~~L 

THEN 



TM-1095 

Page c-3 

iIB$SThliP bSTATtJ% 1 
MUE>E : = ‘3; 
CASE MODE DF 

oa2: x :== G.01 
1..3: Y I= O.c)i 
4, 5: z : = 0. c7i 

ENDi 
END. 



TM-1095 

APPEND i x D 



II 
1’

 
ii 

if 
L 

s 

Z”
 

5 M
 

8 



TM-1095 
Page D-3 



TM-1095 

Paga D-4 





TM-1095 

Page D--O 




